Home
Fictions/Novels
Short Stories
Poems
Essays
Plays
Nonfictions
 
Authors
All Titles
 






In Association with Amazon.com

Home > Authors Index > Browse all available works of Simon Newcomb > Text of Making And Using A Telescope

An essay by Simon Newcomb

Making And Using A Telescope

________________________________________________
Title:     Making And Using A Telescope
Author: Simon Newcomb [More Titles by Newcomb]

The impression is quite common that satisfactory views of the heavenly bodies can be obtained only with very large telescopes, and that the owner of a small one must stand at a great disadvantage alongside of the fortunate possessor of a great one. This is not true to the extent commonly supposed. Sir William Herschel would have been delighted to view the moon through what we should now consider a very modest instrument; and there are some objects, especially the moon, which commonly present a more pleasing aspect through a small telescope than through a large one. The numerous owners of small telescopes throughout the country might find their instruments much more interesting than they do if they only knew what objects were best suited to examination with the means at their command. There are many others, not possessors of telescopes, who would like to know how one can be acquired, and to whom hints in this direction will be valuable. We shall therefore give such information as we are able respecting the construction of a telescope, and the more interesting celestial objects to which it may be applied.

Whether the reader does or does not feel competent to undertake the making of a telescope, it may be of interest to him to know how it is done. First, as to the general principles involved, it is generally known that the really vital parts of the telescope, which by their combined action perform the office of magnifying the object looked at, are two in number, the OBJECTIVE and the EYE-PIECE. The former brings the rays of light which emanate from the object to the focus where the image of the object is formed. The eye-piece enables the observer to see this image to the best advantage.

The functions of the objective as well as those of the eye-piece may, to a certain extent, each be performed by a single lens. Galileo and his contemporaries made their telescopes in this way, because they knew of no way in which two lenses could be made to do better than one. But every one who has studied optics knows that white light passing through a single lens is not all brought to the same focus, but that the blue light will come to a focus nearer the objective than the red light. There will, in fact, be a succession of images, blue, green, yellow, and red, corresponding to the colors of the spectrum. It is impossible to see these different images clearly at the same time, because each of them will render all the others indistinct.

The achromatic object-glass, invented by Dollond, about 1750, obviates this difficulty, and brings all the rays to nearly the same focus. Nearly every one interested in the subject is aware that this object-glass is composed of two lenses--a concave one of flint-glass and a convex one of crown-glass, the latter being on the side towards the object. This is the one vital part of the telescope, the construction of which involves the greatest difficulty. Once in possession of a perfect object-glass, the rest of the telescope is a matter of little more than constructive skill which there is no difficulty in commanding.

The construction of the object-glass requires two completely distinct processes: the making of the rough glass, which is the work of the glass-maker; and the grinding and polishing into shape, which is the work of the optician. The ordinary glass of commerce will not answer the purpose of the telescope at all, because it is not sufficiently clear and homogeneous. OPTICAL GLASS, as it is called, must be made of materials selected and purified with the greatest care, and worked in a more elaborate manner than is necessary in any other kind of glass. In the time of Dollond it was found scarcely possible to make good disks of flint-glass more than three or four inches in diameter. Early in the present century, Guinand, of Switzerland, invented a process by which disks of much larger size could be produced. In conjunction with the celebrated Fraunhofer he made disks of nine or ten inches in diameter, which were employed by his colaborer in constructing the telescopes which were so famous in their time. He was long supposed to be in possession of some secret method of avoiding the difficulties which his predecessors had met. It is now believed that this secret, if one it was, consisted principally in the constant stirring of the molten glass during the process of manufacture. However this may be, it is a curious historical fact that the most successful makers of these great disks of glass have either been of the family of Guinand, or successors, in the management of the family firm. It was Feil, a son-in-law or near relative, who made the glass from which Clark fabricated the lenses of the great telescope of the Lick Observatory. His successor, Mantois, of Paris, carried the art to a point of perfection never before approached. The transparency and uniformity of his disks as well as the great size to which he was able to carry them would suggest that he and his successors have out-distanced all competitors in the process. He it was who made the great 40-inch lens for the Yerkes Observatory.

As optical glass is now made, the material is constantly stirred with an iron rod during all the time it is melting in the furnace, and after it has begun to cool, until it becomes so stiff that the stirring has to cease. It is then placed, pot and all, in the annealing furnace, where it is kept nearly at a melting heat for three weeks or more, according to the size of the pot. When the furnace has cooled off, the glass is taken out, and the pot is broken from around it, leaving only the central mass of glass. Having such a mass, there is no trouble in breaking it up into pieces of all desirable purity, and sufficiently large for moderate-sized telescopes. But when a great telescope of two feet aperture or upward is to be constructed, very delicate and laborious operations have to be undertaken. The outside of the glass has first to be chipped off, because it is filled with impurities from the material of the pot itself. But this is not all. Veins of unequal density are always found extending through the interior of the mass, no way of avoiding them having yet been discovered. They are supposed to arise from the materials of the pot and stirring rod, which become mixed in with the glass in consequence of the intense heat to which all are subjected. These veins must, so far as possible, be ground or chipped out with the greatest care. The glass is then melted again, pressed into a flat disk, and once more put into the annealing oven. In fact, the operation of annealing must be repeated every time the glass is melted. When cooled, it is again examined for veins, of which great numbers are sure to be found. The problem now is to remove these by cutting and grinding without either breaking the glass in two or cutting a hole through it. If the parts of the glass are once separated, they can never be joined without producing a bad scar at the point of junction. So long, however, as the surface is unbroken, the interior parts of the glass can be changed in form to any extent. Having ground out the veins as far as possible, the glass is to be again melted, and moulded into proper shape. In this mould great care must be taken to have no folding of the surface. Imagining the latter to be a sort of skin enclosing the melted glass inside, it must be raised up wherever the glass is thinnest, and the latter allowed to slowly run together beneath it.

[Illustration with caption: THE GLASS DISK.]

If the disk is of flint, all the veins must be ground out on the first or second trial, because after two or three mouldings the glass will lose its transparency. A crown disk may, however, be melted a number of times without serious injury. In many cases--perhaps the majority--the artisan finds that after all his months of labor he cannot perfectly clear his glass of the noxious veins, and he has to break it up into smaller pieces. When he finally succeeds, the disk has the form of a thin grindstone two feet or upward in diameter, according to the size of the telescope to be made, and from two to three inches in thickness. The glass is then ready for the optician.

[Illustration with caption: THE OPTICIAN'S TOOL.]

The first process to be performed by the optician is to grind the glass into the shape of a lens with perfectly spherical surfaces. The convex surface must be ground in a saucer-shaped tool of corresponding form. It is impossible to make a tool perfectly spherical in the first place, but success may be secured on the geometrical principle that two surfaces cannot fit each other in all positions unless both are perfectly spherical. The tool of the optician is a very simple affair, being nothing more than a plate of iron somewhat larger, perhaps a fourth, than the lens to be ground to the corresponding curvature. In order to insure its changing to fit the glass, it is covered on the interior with a coating of pitch from an eighth to a quarter of an inch thick. This material is admirably adapted to the purpose because it gives way certainly, though very slowly, to the pressure of the glass. In order that it may have room to change its form, grooves are cut through it in both directions, so as to leave it in the form of squares, like those on a chess-board.

[Illustration with caption: THE OPTICIAN'S TOOL.]

It is then sprinkled over with rouge, moistened with water, and gently warmed. The roughly ground lens is then placed upon it, and moved from side to side. The direction of the motion is slightly changed with every stroke, so that after a dozen or so of strokes the lines of motion will lie in every direction on the tool. This change of direction is most readily and easily effected by the operator slowly walking around as he polishes, at the same time the lens is to be slowly turned around either in the opposite direction or more rapidly yet in the same direction, so that the strokes of the polisher shall cross the lens in all directions. This double motion insures every part of the lens coming into contact with every part of the polisher, and moving over it in every direction.

Then whatever parts either of the lens or of the polisher may be too high to form a spherical surface will be gradually worn down, thus securing the perfect sphericity of both.

[Illustration with caption: GRINDING A LARGE LENS.]

When the polishing is done by machinery, which is the custom in Europe, with large lenses, the polisher is slid back and forth over the lens by means of a crank attached to a revolving wheel. The polisher is at the same time slowly revolving around a pivot at its centre, which pivot the crank works into, and the glass below it is slowly turned in an opposite direction. Thus the same effect is produced as in the other system. Those who practice this method claim that by thus using machinery the conditions of a uniform polish for every part of the surface can be more perfectly fulfilled than by a hand motion. The results, however, do not support this view. No European optician will claim to do better than the American firm of Alvan Clark & Sons in producing uniformly good object-glasses, and this firm always does the work by hand, moving the glass over the polisher, and not the polisher over the glass.

Having brought both flint and crown glasses into proper figure by this process, they are joined together, and tested by observations either upon a star in the heavens, or some illuminated point at a little distance on the ground. The reflection of the sun from a drop of quicksilver, a thermometer bulb, or even a piece of broken bottle, makes an excellent artificial star. The very best optician will always find that on a first trial his glass is not perfect. He will find that he has not given exactly the proper curves to secure achromatism. He must then change the figure of one or both the glasses by polishing it upon a tool of slightly different curvature. He may also find that there is some spherical aberration outstanding. He must then alter his curve so as to correct this. The correction of these little imperfections in the figures of the lenses so as to secure perfect vision through them is the most difficult branch of the art of the optician, and upon his skill in practising it will depend more than upon anything else his ultimate success and reputation. The shaping of a pair of lenses in the way we have described is not beyond the power of any person of ordinary mechanical ingenuity, possessing the necessary delicacy of touch and appreciation of the problem he is attacking. But to make a perfect objective of considerable size, which shall satisfy all the wants of the astronomer, is an undertaking requiring such accuracy of eyesight, and judgment in determining where the error lies, and such skill in manipulating so as to remove the defects, that the successful men in any one generation can be counted on one's fingers.

In order that the telescope may finally perform satisfactorily it is not sufficient that the lenses should both be of proper figure; they must also both be properly centred in their cells. If either lens is tipped aside, or slid out from its proper central line, the definition will be injured. As this is liable to happen with almost any telescope, we shall explain how the proper adjustment is to be made.

The easiest way to test this adjustment is to set the cell with the two glasses of the objective in it against a wall at night, and going to a short distance, observe the reflection in the glass of the flame of a candle held in the hand. Three or four reflections will be seen from the different surfaces. The observer, holding the candle before his eye, and having his line of sight as close as possible to the flame, must then move until the different images of the flame coincide with each other. If he cannot bring them into coincidence, owing to different pairs coinciding on different sides of the flame, the glasses are not perfectly centred upon each other. When the centring is perfect, the observer having the light in the line of the axes of the lenses, and (if it were possible to do so) looking through the centre of the flame, would see the three or four images all in coincidence. As he cannot see through the flame itself, he must look first on one side and then on the other, and see if the arrangement of the images seen in the lenses is symmetrical. If, going to different distances, he finds no deviation from symmetry, in this respect the adjustment is near enough for all practical purposes.

A more artistic instrument than a simple candle is a small concave reflector pierced through its centre, such as is used by physicians in examining the throat.

[Illustration with caption: IMAGE OF CANDLE-FLAME IN OBJECT-GLASS.]

[Illustration with caption: TESTING ADJUSTMENT OF OBJECT-GLASS.]

Place this reflector in the prolongation of the optical axis, set the candle so that the light from the reflector shall be shown through the glass, and look through the opening. Images of the reflector itself will then be seen in the object-glass, and if the adjustment is perfect, the reflector can be moved so that they will all come into coincidence together.

When the objective is in the tube of the telescope, it is always well to examine this adjustment from time to time, holding the candle so that its light shall shine through the opening perpendicularly upon the object-glass. The observer looks upon one side of the flame, and then upon the other, to see if the images are symmetrical in the different positions. If in order to see them in this way the candle has to be moved to one side of the central line of the tube, the whole objective must be adjusted. If two images coincide in one position of the candle-flame, and two in another position, so that they cannot all be brought together in any position, it shows that the glasses are not properly adjusted in their cell. It may be remarked that this last adjustment is the proper work of the optician, since it is so difficult that the user of the telescope cannot ordinarily effect it. But the perpendicularity of the whole objective to the tube of the telescope is liable to be deranged in use, and every one who uses such an instrument should be able to rectify an error of this kind.

The question may be asked, How much of a telescope can an amateur observer, under any circumstances, make for himself? As a general rule, his work in this direction must be confined to the tube and the mounting. We should not, it is true, dare to assert that any ingenious young man, with a clear appreciation of optical principles, could not soon learn to grind and polish an object-glass for himself by the method we have described, and thus obtain a much better instrument than Galileo ever had at his command. But it would be a wonderful success if his home-made telescope was equal to the most indifferent one which can be bought at an optician's. The objective, complete in itself, can be purchased at prices depending upon the size.

[Footnote: The following is a rough rule for getting an idea of the price of an achromatic objective, made to order, of the finest quality. Take the cube of the diameter in inches, or, which is the same thing, calculate the contents of a cubical box which would hold a sphere of the same diameter as the clear aperture of the glass. The price of the glass will then range from $1 to $1.75 for each cubic inch in this box. For example, the price of a four-inch objective will probably range from $64 to $112. Very small object-glasses of one or two inches may be a little higher than would be given by this rule. Instruments which are not first-class, but will answer most of the purposes of the amateur, are much cheaper.]

[Illustration with caption: A VERY PRIMITIVE MOUNTING FOR A TELESCOPE.]

The tube for the telescope may be made of paper, by pasting a great number of thicknesses around a long wooden cylinder. A yet better tube is made of a simple wooden box. The best material, however, is metal, because wood and pasteboard are liable both to get out of shape, and to swell under the influence of moisture. Tin, if it be of sufficient thickness, would be a very good material. The brighter it is kept, the better. The work of fitting the objective into one end of a tin tube of double thickness, and properly adjusting it, will probably be quite within the powers of the ordinary amateur. The fitting of the eye-piece into the other end of the tube will require some skill and care both on his own part and that of his tinsmith.

Although the construction of the eye-piece is much easier than that of the objective, since the same accuracy in adjusting the curves is not necessary, yet the price is lower in a yet greater degree, so that the amateur will find it better to buy than to make his eye-piece, unless he is anxious to test his mechanical powers. For a telescope which has no micrometer, the Huyghenian or negative eye-piece, as it is commonly called, is the best. As made by Huyghens, it consists of two plano-convex lenses, with their plane sides next the eye, as shown in the figure.

[Illustration with caption: THE HUYGHENIAN EYE-PIECE.]

So far as we have yet described our telescope it is optically complete. If it could be used as a spy-glass by simply holding it in the hand, and pointing at the object we wish to observe, there would be little need of any very elaborate support. But if a telescope, even of the smallest size, is to be used with regularity, a proper "mounting" is as essential as a good instrument. Persons unpractised in the use of such instruments are very apt to underrate the importance of those accessories which merely enable us to point the telescope. An idea of what is wanted in the mounting may readily be formed if the reader will try to look at a star with an ordinary good-sized spy-glass held in the hand, and then imagine the difficulties he meets with multiplied by fifty.

The smaller and cheaper telescopes, as commonly sold, are mounted on a simple little stand, on which the instrument admits of a horizontal and vertical motion. If one only wants to get a few glimpses of a celestial object, this mounting will answer his purpose. But to make anything like a study of a celestial body, the mounting must be an equatorial one; that is, one of the axes around which the telescope moves must be inclined so as to point towards the pole of the heavens, which is near the polar star. This axis will then make an angle with the horizon equal to the latitude of the place. The telescope cannot, however, be mounted directly on this axis, but must be attached to a second one, itself fastened to this one.

[Illustration with caption: SECTION OF THE PRIMITIVE MOUNTING. P P. Polar axis, bearing a fork at the upper end A. Declination axis passing through the fork E. Section of telescope tube C. Weight to balance the tube.]

When mounted in this way, an object can be followed in its diurnal motion from east to west by turning on the polar axis alone. But if the greatest facility in use is required, this motion must be performed by clock-work. A telescope with this appendage will commonly cost one thousand dollars and upward, so that it is not usually applied to very small ones.

We will now suppose that the reader wishes to purchase a telescope or an object-glass for himself, and to be able to judge of its performance. He must have the object-glass properly adjusted in its tube, and must use the highest power; that is, the smallest eye-piece, which he intends to use in the instrument. Of course he understands that in looking directly at a star or a celestial object it must appear sharp in outline and well defined. But without long practice with good instruments, this will not give him a very definite idea. If the person who selects the telescope is quite unpractised, it is possible that he can make the best test by ascertaining at what distance he can read ordinary print. To do this he should have an eye-piece magnifying about fifty times for each inch of aperture of the telescope. For instance, if his telescope is three inches clear aperture, then his eye-piece should magnify one hundred and fifty times; if the aperture is four inches, one magnifying two hundred times may be used. This magnifying power is, as a general rule, about the highest that can be advantageously used with any telescope. Supposing this magnifying power to be used, this page should be legible at a distance of four feet for every unit of magnifying power of the telescope. For example, with a power of 100, it should be legible at a distance of 400 feet; with a power of 200, at 800 feet, and so on. To put the condition into another shape: if the telescope will read the print at a distance of 150 feet for each inch of aperture with the best magnifying power, its performance is at least not very bad. If the magnifying power is less than would be given by this rule, the telescope should perform a little better; for instance, a three-inch telescope with a power of 60 should make this page legible at a distance of 300 feet, or four feet for each unit of power.

The test applied by the optician is much more exact, and also more easy. He points the instrument at a star, or at the reflection of the sun's rays from a small round piece of glass or a globule of quicksilver several hundred yards away, and ascertains whether the rays are all brought to a focus. This is not done by simply looking at the star, but by alternately pushing the eye-piece in beyond the point of distinct vision and drawing it out past the point. In this way the image of the star will appear, not as a point, but as a round disk of light. If the telescope is perfect, this disk will appear round and of uniform brightness in either position of the eye-piece. But if there is any spherical aberration or differences of density in different parts of the glass, the image will appear distorted in various ways. If the spherical aberration is not correct, the outer rim of the disk will be brighter than the centre when the eye-piece is pushed in, and the centre will be the brighter when it is drawn out. If the curves of the glass are not even all around, the image will appear oval in one or the other position. If there are large veins of unequal density, wings or notches will be seen on the image. If the atmosphere is steady, the image, when the eye-piece is pushed in, will be formed of a great number of minute rings of light. If the glass is good, these rings will be round, unbroken, and equally bright. We present several figures showing how these spectral images, as they are sometimes called, will appear; first, when the eye-piece is pushed in, and secondly, when it is drawn out, with telescopes of different qualities.

We have thus far spoken only of the refracting telescope, because it is the kind with which an observer would naturally seek to supply himself. At the same time there is little doubt that the construction of a reflector of moderate size is easier than that of a corresponding refractor. The essential part of the reflector is a slightly concave mirror of any metal which will bear a high polish. This mirror may be ground and polished in the same way as a lens, only the tool must be convex.

[Illustration with caption: SPECTRAL IMAGES OF STARS; THE UPPER LINE SHOWING HOW THEY APPEAR WITH THE EYE-PIECE PUSHED IN, THE LOWER WITH THE EYE-PIECE DRAWN OUT.

A The telescope is all right B Spherical aberration shown by the light and dark centre C The objective is not spherical but elliptical D The glass not uniform--a very bad and incurable case E One side of the objective nearer than the other. Adjust it]

Of late years it has become very common to make the mirror of glass and to cover the reflecting face with an exceedingly thin film of silver, which can be polished by hand in a few minutes. Such a mirror differs from our ordinary looking-glass in that the coating of silver is put on the front surface, so that the light does not pass through the glass. Moreover, the coating of silver is so thin as to be almost transparent: in fact, the sun may be seen through it by direct vision as a faint blue object. Silvered glass reflectors made in this way are extensively manufactured in London, and are far cheaper than refracting telescopes of corresponding size. Their great drawback is the want of permanence in the silver film. In the city the film will ordinarily tarnish in a few months from the sulphurous vapors arising from gaslights and other sources, and even in the country it is very difficult to preserve the mirror from the contact of everything that will injure it. In consequence, the possessor of such a telescope, if he wishes to keep it in order, must always be prepared to resilver and repolish it. To do this requires such careful manipulation and management of the chemicals that it is hardly to be expected that an amateur will take the trouble to keep his telescope in order, unless he has a taste for chemistry as well as for astronomy.

The curiosity to see the heavenly bodies through great telescopes is so wide-spread that we are apt to forget how much can be seen and done with small ones. The fact is that a large proportion of the astronomical observations of past times have been made with what we should now regard as very small instruments, and a good deal of the solid astronomical work of the present time is done with meridian circles the apertures of which ordinarily range from four to eight inches. One of the most conspicuous examples in recent times of how a moderate-sized instrument may be utilized is afforded by the discoveries of double stars made by Mr. S. W. Burnham, of Chicago. Provided with a little six-inch telescope, procured at his own expense from the Messrs. Clark, he has discovered many hundred double stars so difficult that they had escaped the scrutiny of Maedler and the Struves, and gained for himself one of the highest positions among the astronomers of the day engaged in the observation of these objects. It was with this little instrument that on Mount Hamilton, California--afterward the site of the great Lick Observatory--he discovered forty-eight new double stars, which had remained unnoticed by all previous observers. First among the objects which show beautifully through moderate instruments stands the moon. People who want to see the moon at an observatory generally make the mistake of looking when the moon is full, and asking to see it through the largest telescope. Nothing can then be made out but a brilliant blaze of light, mottled with dark spots, and crossed by irregular bright lines. The best time to view the moon is near or before the first quarter, or when she is from three to eight days old. The last quarter is of course equally favorable, so far as seeing is concerned, only one must be up after midnight to see her in that position. Seen through a three or four inch telescope, a day or two before the first quarter, about half an hour after sunset, and with a magnifying power between fifty and one hundred, the moon is one of the most beautiful objects in the heavens. Twilight softens her radiance so that the eye is not dazzled as it will be when the sky is entirely dark. The general aspect she then presents is that of a hemisphere of beautiful chased silver carved out in curious round patterns with a more than human skill. If, however, one wishes to see the minute details of the lunar surface, in which many of our astronomers are now so deeply interested, he must use a higher magnifying power. The general beautiful effect is then lessened, but more details are seen. Still, it is hardly necessary to seek for a very large telescope for any investigation of the lunar surface. I very much doubt whether any one has ever seen anything on the moon which could not be made out in a clear, steady atmosphere with a six-inch telescope of the first class.

Next to the moon, Saturn is among the most beautiful of celestial objects. Its aspect, however, varies with its position in its orbit. Twice in the course of a revolution, which occupies nearly thirty years, the rings are seen edgewise, and for a few days are invisible even in a powerful telescope. For an entire year their form may be difficult to make out with a small telescope. These unfavorable conditions occur in 1907 and 1921. Between these dates, especially for some years after 1910, the position of the planet in the sky will be the most favorable, being in northern declination, near its perihelion, and having its rings widely open. We all know that Saturn is plainly visible to the naked eye, shining almost like a star of the first magnitude, so that there is no difficulty in finding it if one knows when and where to look. In 1906-1908 its oppositions occur in the month of September. In subsequent years, it will occur a month later every two and a half years. The ring can be seen with a common, good spy-glass fastened to a post so as to be steady. A four or five-inch telescope will show most of the satellites, the division in the ring, and, when the ring is well opened, the curious dusky ring discovered by Bond. This "crape ring," as it is commonly called, is one of the most singular phenomena presented by that planet.

It might be interesting to the amateur astronomer with a keen eye and a telescope of four inches aperture or upward to frequently scrutinize Saturn, with a view of detecting any extraordinary eruptions upon his surface, like that seen by Professor Hall in 1876. On December 7th of that year a bright spot was seen upon Saturn's equator. It elongated itself from day to day, and remained visible for several weeks. Such a thing had never before been known upon this planet, and had it not been that Professor Hall was engaged in observations upon the satellites, it would not have been seen then. A similar spot on the planet was recorded in 1902, and much more extensively noticed. On this occasion the spot appeared in a higher latitude from the planet's equator than did Professor Hall's. At this appearance the time of the planet's revolution on its axis was found to be somewhat greater than in 1876, in accordance with the general law exhibited in the rotations of the sun and of Jupiter. Notwithstanding their transient character, these two spots have afforded the only determination of the time of revolution of Saturn which has been made since Herschel the elder.

[Illustration with caption: THE GREAT REFRACTOR OF THE NATIONAL OBSERVATORY AT WASHINGTON]

Of the satellites of Saturn the brightest is Titan, which can be seen with the smallest telescope, and revolves around the planet in fifteen days. Iapetus, the outer satellite, is remarkable for varying greatly in brilliancy during its revolution around the planet. Any one having the means and ability to make accurate photometrical estimates of the light of this satellite in all points of its orbit, can thereby render a valuable service to astronomy.

The observations of Venus, by which the astronomers of the last century supposed themselves to have discovered its time of rotation on its axis, were made with telescopes much inferior to ours. Although their observations have not been confirmed, some astronomers are still inclined to think that their results have not been refuted by the failure of recent observers to detect those changes which the older ones describe on the surface of the planet. With a six-inch telescope of the best quality, and with time to choose the most favorable moment, one will be as well equipped to settle the question of the rotation of Venus as the best observer. The few days near each inferior conjunction are especially to be taken advantage of.

The questions to be settled are two: first, are there any dark spots or other markings on the disk? second, are there any irregularities in the form of the sharp cusps? The central portions of the disk are much darker than the outline, and it is probably this fact which has given rise to the impression of dark spots. Unless this apparent darkness changes from time to time, or shows some irregularity in its outline, it cannot indicate any rotation of the planet. The best time to scrutinize the sharp cusps will be when the planet is nearly on the line from the earth to the sun. The best hour of the day is near sunset, the half-hour following sunset being the best of all. But if Venus is near the sun, she will after sunset be too low down to be well seen, and must be looked at late in the afternoon.

The planet Mars must always be an object of great interest, because of all the heavenly bodies it is that which appears to bear the greatest resemblance to the earth. It comes into opposition at intervals of a little more than two years, and can be well seen only for a month or two before and after each opposition. It is hopeless to look for the satellites of Mars with any but the greatest telescopes of the world. But the markings on the surface, from which the time of rotation has been determined, and which indicate a resemblance to the surface of our own planet, can be well seen with telescopes of six inches aperture and upward. One or both of the bright polar spots, which are supposed to be due to deposits of snow, can be seen with smaller telescopes when the situation of the planet is favorable.

The case is different with the so-called canals discovered by Schiaparelli in 1877, which have ever since excited so much interest, and given rise to so much discussion as to their nature. The astronomer who has had the best opportunities for studying them is Mr. Percival Lowell, whose observatory at Flaggstaff, Arizona, is finely situated for the purpose, while he also has one of the best if not the largest of telescopes. There the canals are seen as fine dark lines; but, even then, they must be fifty miles in breadth, so that the word "canal" may be regarded as a misnomer.

Although the planet Jupiter does not present such striking features as Saturn, it is of even more interest to the amateur astronomer, because he can study it with less optical power, and see more of the changes upon its surface. Every work on astronomy tells in a general way of the belts of Jupiter, and many speculate upon their causes. The reader of recent works knows that Jupiter is supposed to be not a solid mass like the earth, but a great globe of molten and vaporous matter, intermediate in constitution between the earth and the sun. The outer surface which we see is probably a hot mass of vapor hundreds of miles deep, thrown up from the heated interior. The belts are probably cloudlike forms in this vaporous mass. Certain it is that they are continually changing, so that the planet seldom looks exactly the same on two successive evenings. The rotation of the planet can be very well seen by an hour's watching. In two hours an object at the centre of the disk will move off to near the margin.

The satellites of this planet, in their ever-varying phases, are objects of perennial interest. Their eclipses may be observed with a very small telescope, if one knows when to look for them. To do this successfully, and without waste of time, it is necessary to have an astronomical ephemeris for the year. All the observable phenomena are there predicted for the convenience of observers. Perhaps the most curious observation to be made is that of the shadow of the satellite crossing the disk of Jupiter. The writer has seen this perfectly with a six-inch telescope, and a much smaller one would probably show it well. With a telescope of this size, or a little larger, the satellites can be seen between us and Jupiter. Sometimes they appear a little brighter than the planet, and sometimes a little fainter.

Of the remaining large planets, Mercury, the inner one, and Uranus and Neptune, the two outer ones, are of less interest than the others to an amateur with a small telescope, because they are more difficult to see. Mercury can, indeed, be observed with the smallest instrument, but no physical configurations or changes have ever been made out upon his surface. The question whether any such can be observed is still an open one, which can be settled only by long and careful scrutiny. A small telescope is almost as good for this purpose as a large one, because the atmospheric difficulties in the way of getting a good view of the planet cannot be lessened by an increase of telescopic power.

Uranus and Neptune are so distant that telescopes of considerable size and high magnifying power are necessary to show their disks. In small telescopes they have the appearance of stars, and the observer has no way of distinguishing them from the surrounding stars unless he can command the best astronomical appliances, such as star maps, circles on his instrument, etc. It is, however, to be remarked, as a fact not generally known, that Uranus can be well seen with the naked eye if one knows where to look for it. To recognize it, it is necessary to have an astronomical ephemeris showing its right ascension and declination, and star maps showing where the parallels of right ascension and declination lie among the stars. When once found by the naked eye, there will, of course, be no difficulty in pointing the telescope upon it.

Of celestial objects which it is well to keep a watch upon, and which can be seen to good advantage with inexpensive instruments, the sun may be considered as holding the first place. Astronomers who make a specialty of solar physics have, especially in this country, so many other duties, and their view is so often interrupted by clouds, that a continuous record of the spots on the sun and the changes they undergo is hardly possible. Perhaps one of the most interesting and useful pieces of astronomical work which an amateur can perform will consist of a record of the origin and changes of form of the solar spots and faculae. What does a spot look like when it first comes into sight? Does it immediately burst forth with considerable magnitude, or does it begin as the smallest visible speck, and gradually grow? When several spots coalesce into one, how do they do it? When a spot breaks up into several pieces, what is the seeming nature of the process? How do the groups of brilliant points called faculae come, change, and grow? All these questions must no doubt be answered in various ways, according to the behavior of the particular spot, but the record is rather meagre, and the conscientious and industrious amateur will be able to amuse himself by adding to it, and possibly may make valuable contributions to science in the same way.

Still another branch of astronomical observation, in which industry and skill count for more than expensive instruments, is the search for new comets. This requires a very practised eye, in order that the comet may be caught among the crowd of stars which flit across the field of view as the telescope is moved. It is also necessary to be well acquainted with a number of nebulae which look very much like comets. The search can be made with almost any small telescope, if one is careful to use a very low power. With a four-inch telescope a power not exceeding twenty should be employed. To search with ease, and in the best manner, the observer should have what among astronomers is familiarly known as a "broken-backed telescope." This instrument has the eye-piece on the end of the axis, where one would never think of looking for it. By turning the instrument on this axis, it sweeps from one horizon through the zenith and over to the other horizon without the observer having to move his head. This is effected by having a reflector in the central part of the instrument, which throws the rays of light at right angles through the axis.

[Illustration: THE "BROKEN-BACKED COMET-SEEKER"]

How well this search can be conducted by observers with limited means at their disposal is shown by the success of several American observers, among whom Messrs. W. R. Brooks, E. E. Barnard, and Lewis Swift are well known. The cometary discoveries of these men afford an excellent illustration of how much can be done with the smallest means when one sets to work in the right spirit.

The larger number of wonderful telescopic objects are to be sought for far beyond the confines of the solar system, in regions from which light requires years to reach us. On account of their great distance, these objects generally require the most powerful telescopes to be seen in the best manner; but there are quite a number within the range of the amateur. Looking at the Milky Way, especially its southern part, on a clear winter or summer evening, tufts of light will be seen here and there. On examining these tufts with a telescope, they will be found to consist of congeries of stars. Many of these groups are of the greatest beauty, with only a moderate optical power. Of all the groups in the Milky Way the best known is that in the sword-handle of Perseus, which may be seen during the greater part of the year, and is distinctly visible to the naked eye as a patch of diffused light. With the telescope there are seen in this patch two closely connected clusters of stars, or perhaps we ought rather to say two centres of condensation.

Another object of the same class is Proesepe in the constellation Cancer. This can be very distinctly seen by the naked eye on a clear moonless night in winter or spring as a faint nebulous object, surrounded by three small stars. The smallest telescope shows it as a group of stars.

Of all stellar objects, the great nebula of Orion is that which has most fascinated the astronomers of two centuries. It is distinctly visible to the naked eye, and may be found without difficulty on any winter night. The three bright stars forming the sword-belt of Orion are known to every one who has noticed that constellation. Below this belt is seen another triplet of stars, not so bright, and lying in a north and south direction. The middle star of this triplet is the great nebula. At first the naked eye sees nothing to distinguish it from other stars, but if closely scanned it will be seen to have a hazy aspect. A four-inch telescope will show its curious form. Not the least interesting of its features are the four stars known as the "Trapezium," which are located in a dark region near its centre. In fact, the whole nebula is dotted with stars, which add greatly to the effect produced by its mysterious aspect.

The great nebula of Andromeda is second only to that of Orion in interest. Like the former, it is distinctly visible to the naked eye, having the aspect of a faint comet. The most curious feature of this object is that although the most powerful telescopes do not resolve it into stars, it appears in the spectroscope as if it were solid matter shining by its own light.

The above are merely selections from the countless number of objects which the heavens offer to telescopic study. Many such are described in astronomical works, but the amateur can gratify his curiosity to almost any extent by searching them out for himself.

[Illustration with caption: NEBULA IN ORION]

Ever since 1878 a red spot, unlike any before noticed, has generally been visible on Jupiter. At first it was for several years a very conspicuous object, but gradually faded away, so that since 1890 it has been made out only with difficulty. But it is now regarded as a permanent feature of the planet. There is some reason to believe it was occasionally seen long before attention was first attracted to it. Doubtless, when it can be seen at all, practice in observing such objects is more important than size of telescope.


[The end]
Simon Newcomb's essay: Making And Using A Telescope

________________________________________________



GO TO TOP OF SCREEN