Home > Authors Index > John Wood Campbell > Ultimate Weapon > This page
The Ultimate Weapon, a novel by John Wood Campbell |
||
Chapter 7 |
||
< Previous |
Table of content |
Next > |
________________________________________________
_ VII Faragaut looked unsympathetically at Buck Kendall, as he stood glaring perplexedly at the apparatus he had been working on. "What's the matter, Buck, won't she perk?" "No, damn it, and it should." "That," pointed out Faragaut, "is just what you think. Nature thinks otherwise. We generally have to abide by her opinions. What is it--or what is it meant to be?" "Perfect reflector." "Make a nice mirror. What else, and how come?" "A mirror is just what I want. I want something that will reflect all the radiation that falls on it. No metal will, even in its range of maximum reflectivity. Aluminum goes pretty high, silver, on some ranges, a bit higher. But none of them reaches 99%. I want a perfect reflector that I can put behind a source of wild, radiant energy so I can focus it, and put it where it will do the most good." "Ninety-nine percent. Sounds pretty good. That's better efficiency than most anything else we have, isn't it?" "No, it isn't. The accumulator is 100% efficient on the discharge, and a good transformer, even before that, ran as high as 99.8 sometimes. They had to. If you have a transformer handling 1,000,000 horsepower, and it's even 1% inefficient, you have a heat loss of nearly 10,000 horsepower to handle. I want to use this as a destructive weapon, and if I hand the other fellow energy in distressing amounts, it's even worse at my end, because no matter how perfect a beam I work out, there will still be some spread. I can make it mighty tight though, if I make my surface a perfect parabola. But if I send a million horse, I have to handle it, and a ship can't stand several hundred thousand horsepower roaming around loose as heat, let alone the weapon itself. The thing will be worse to me than to him. "I figured there was something worth investigating in those fields we developed on our magnetic shield work. They had to do, you know, with light, and radiant energy. There must be some reason why a metal reflects. Further, though we can't get down to the basic root of matter, the atom, yet, we can play around just about as we please with molecules and molecular forces. But it is molecular force that determines whether light and radiant energy of that caliber shall be reflected or transmitted. Take aluminum as an example. In the metallic molecule state, the metal will reflect pretty well. But volatilize it, and it becomes transparent. All gases are transparent, all metals reflective. Then the secret of perfect reflection lies at a molecular level in the organization of matter, and is within our reach. Well--this thing was supposed to make that piece of silver reflective. I missed it that time." He sighed. "I suppose I'll have to try again." "I should think you'd use tungsten for that. If you do have a slight leak, that would handle the heat." "No, it would hold it. Silver is a better conductor of heat. But the darned thing won't work." "Your other scheme has." Faragaut laughed. "I came out principally for some signatures. IP wants one hundred thousand tons of mercury. I've sold most of mine already in the open market. You want to sell?" "Certainly. And I told you my price." "I know," sighed Faragaut. "It seems a shame though. Those IP board men would pay higher. And they're so damn tight it seems a crime not to make 'em pay up when they have to." "The IP will need the money worse elsewhere. Where do I--oh, here?" "Right. I'll be out again this evening. The regular group will be here?" Kendall nodded as he signed in triplicate. * * * * * That evening, Buck had found the trouble in his apparatus, for as he well knew, the theory was right, only the practical apparatus needed changing. Before the group composed of Faragaut, McLaurin and the members of Kendall's "bank," he demonstrated it. It was merely a small, model apparatus, with a mirror of space-strained silver that was an absolutely perfect reflector. The mirror had been ground out of a block of silver one foot deep, by four inches square, carefully annealed, and the work had all been done in a cooling bath. The result was a mirror that was so nearly a perfect paraboloid that the beam held sharp and absolutely tight for the half-mile range they tested it on. At the projector it was three and one-half inches in diameter. At the target, it was three and fifty-two one hundredths inches in diameter. "Well, you've got the mirror, what are you going to reflect with it now?" asked McLaurin. "The greatest problem is getting a radiant source, isn't it? You can't get a temperature above about ten thousand degrees, and maintain it very long, can you?" "Why not?" Kendall smiled. "It'll volatilize and leave the scene of action, won't it?" "What if it's a gaseous source already?" "What? Just a gas-flame? That won't give you the point source you need. You're using just a spotlight here, with a Moregan Point-light. That won't give you energy, and if you use a gas-flame, the spread will be so great, that no matter how perfectly you figure your mirror, it won't beam." "The answer is easy. Not an ordinary gas-flame--a very extra-special kind of gas-flame. Know anything about Renwright's ionization-work?" "Renwright--he's an IP man isn't he?" "Right. He's developed a system, which, thanks to the power we can get in that atostor, will sextuply ionize oxygen gas. Now: what does that mean?" "Spirits of space! Concentrated essence of energy!" "Right. And in preparation, Cole here had one made up for me. That--and something else. We'll just hook it up--" With Devin's aid, Kendall attached the second apparatus, a larger device into which the silver block with its mirror surface fitted. With the uttermost care, the two physicists lined it up. Two projectors pointed toward each other at an angle, the base angles of a triangle, whose apex was the center of the mirror. On very low power, a soft, glowing violet light filtered out through the opening of the one, and a slight green light came from the other. But where the two streams met, an intense, violet glare built up. The center of action was not at the focus, and slowly this was lined up, till a sharp, violet beam of light reached out across the open yard to the target set up. Buck Kendall cut off the power, and slowly got into position. "Now. Keep out from in front of that thing. Put on these glasses--and watch out." Heavy, thick-lensed orange-brown goggles were passed out, and Kendall took his place. Before him, a thick window of the same glass had been arranged, so that he might see uninterruptedly the controls at hand, and yet watch unblinded, the action of the beam. Dully the mirror-force relay clicked. A hazy glow ran over the silver block, and died. Then--simultaneously the power was thrown from two small, compact atostors into the twin projectors. Instantly--a titanic eruption of light almost invisibly violet, spurted out in a solid, compact stream. With a roar and crash, it battered its way through the thick air, and crashed into the heavy target plate. A stream of flame and scintillating sparks erupted from the armor plate--and died as Kendall cut the beam. A white-hot area a foot across leaked down the face of the metal. "That," said Faragaut gently, removing his goggles. "That's not a spotlight, and it's not exactly a gas-flame. But I still don't know what that blue-hot needle of destruction is. Just what do you call that tame stellar furnace of yours?" "Not so far off, Tom," said Kendall happily, "except that even S Doradus is cold compared to that. That sends almost pure ultra-violet light--which, by the way, it is almost impossible to reflect successfully, and represents a temperature to be expressed not in thousands of degrees, nor yet in tens of thousands. I calculated the temperature would be about 750,000 degrees. What is happening is that a stream of low-voltage electrons--cathode rays--in great quantity are meeting great quantities of sextuply ionized oxygen. That means that a nucleus used to having two electrons in the K-ring, and six in the next, has had that outer six knocked off, and then has been hurled violently into free air. "All by themselves, those sextuply ionized oxygen atoms would have a good bit to say, but they don't really begin to talk till they start roaring for those electrons I'm feeding them. At the meeting point, they grab up all they can get--probably about five--before the competition and the fierce release of energy drives them out, part-satisfied. I lose a little energy there, but not a real fraction. It's the howl they put up for the first four that counts. The electron-feed is necessary, because otherwise they'd smash on and ruin that mirror. They work practically in a perfect vacuum. That beam smashes the air out of the way. Of course, in space it would work better." "How could it?" asked Faragaut, faintly. "Kendall," asked McLaurin, "can we install that in the IP ships?" "You can start." Kendall shrugged. "There isn't a lot of apparatus. I'm going to install them in my ships, and in the--bank. I suspect--we haven't a lot of time left." "How near ready are those ships?" "About. That's all I can say. They've been torn up a bit for installation of the atostor apparatus. Now they'll have to be changed again." "Anything more coming?" Buck smiled slowly. He turned directly to McLaurin and replied: "Yes--the Strangers. As to developments--I can't tell, naturally. But if they do, it will be something entirely unexpected now. You see, given one new discovery, a half-dozen will follow immediately from it. When we announced that atostor, look what happened. Renwright must have thought it was God's gift to suffering physicists. He stuck some oxygen in the thing, added some of his own stuff--and behold. The magnetic apparatus gave us directly the shield, and indirectly this mirror. Now, I seem to have reached the end for the time. I'm still trying to get that space-release for high speed--speed greater than light, that is. So far," he added bitterly, "all I've gotten as an answer is a single expression that simply means practical zero--Heisenberg's Uncertainty Expression." "I'm uncertain as to your meaning"--McLaurin smiled--"but I take it that's nothing new." "No. Nearly four centuries old--twentieth century physics. I'll have to try some other line of attack, I guess, but that did seem so darned right. It just sounded right. Something ought to happen--and it just keeps saying 'nothing more except the natural uncertainty of nature.'" "Try it out, your math might be wrong somewhere." Kendall laughed. "If it was--I'd hate to try it out. If it wasn't I'd have no reason to. And there's plenty of other work to do. For one thing, getting that apparatus in production. The IP board won't like me." Kendall smiled. "They don't," replied McLaurin. "They're getting more and more and more worried--but they've got to keep the IP fleet in such condition that it can at least catch an up-to-date freighter." * * * * * Gresth Gkae looked back at Sthor rapidly dropping behind, and across at her sister world, Asthor, circling a bare 100,000 miles away. Behind his great interstellar cruiser came a long line of similar ships. Each was loaded now not with instruments and pure scientists, but with weapons, fuel and warriors. Colonists too, came in the last ships. One hundred and fifty giant ships. All the wealth of Sthor and Asthor had been concentrated in producing those great machines. Every one represented nearly the equivalent of thirty million Earth-dollars. Four and a half billions of dollars for mere materials. Gresth Gkae had the honor of lead position, for he had discovered the planets and their stable, though tiny, sun. Still, Gresth Gkae knew his own giant Mira was a super-giant sun--and a curse and a menace to any rational society. Our yellow-white sun (to his eyes, an almost invisible color, similar to our blue) was small, but stable, and warm enough. In half an hour, all the ships were in space, and at a given signal, at ten-second intervals, they sprang into the superspeed, faster than light. For an instant, giant Mira ran and seemed distorted, as though seen through a porthole covered with running water, then steadied, curiously distorted. Faster than light they raced across the galaxy. Even in their super-fast ships, nearly three and a half weeks passed before the sun they sought, singled itself from the star-field as an extra bright point. Two days more, and the sun was within planetary distance. They came at an angle to the plane of the ecliptic, but they leveled down to it now, and slanted toward giant Jupiter and Jovian worlds. Ten worlds, in one sweep, it was--four habitable worlds. The nine satellites would be converted into forts at once, nine space-sweeping forts guarding the approaches to the planet. Gresth Gkae had made a fairly good search of the worlds, and knew that Earth was the main home of civilization in this system. Mars was second, and Venus third. But Jupiter offered the greatest possibilities for quick settlement, a base from which they could more easily operate, a base for fuels, for the heavy elements they would need-- Fifteen million miles from Jupiter they slowed below the speed of light--and the IP stations observed them. Instantly, according to instructions issued by Commander McLaurin, a fleet of ten of the tiniest, fastest scouts darted out. As soon as possible, a group of three heavy cruisers, armed with all the inventions that had been discovered, the atostor power system, perfectly conducting power leads, the terrible UV ray, started out. The scouts got there first. Cameras were grinding steadily, with long range telescopic lenses, delicate instruments probed and felt and caught their fingers in the fields of the giant fleet. At ten-second intervals, giant ships popped into being, and glided smoothly toward Jupiter. Then the cruisers arrived. They halted at a respectful distance, and waited. The Miran ships plowed on undisturbed. Simultaneously, from the three leaders, terrific neutron rays shot out. The paraffin block walls stopped those--and the cruisers started to explain their feelings on the subject. They were the IP-J-37, 39, and 42. The 37 turned up the full power of the UV ray. The terrific beam of ultra-violet energy struck the second Miran ship, and the spot it touched exploded into incandescence, burned white-hot--and puffed out abruptly as the air pressure within blew the molten metal away. The Mirans were startled. This was not the type of thing Gresth Gkae had warned them of. Gresth Gkae himself frowned as the sudden roar of the machines of his ship rose in the metal walls. A stream of ten-inch atomic bombs shrieked out of their tubes, fully glowing green things floated out more slowly, and immediately waxed brilliant. Gamma ray bombs--but they could be guarded against-- The three Solarian cruisers were washed in such frightful flame as they had never imagined. Streams of atomic bombs were exploding soundlessly, ineffectively in space, not thirty feet from them as they felt the sudden resistance of the magnetic shields. Hopefully, the 39 probed with her neutron gun. Nothing happened save that several gamma ray bombs went off explosively, and all the atomic bombs in its path exploded at once. Gresth Gkae knew what that meant. Neutron beam guns. Then this race was more intelligent than he had believed. They had not had them before. Had he perhaps given them too much warning and information? There was a sudden, deeper note in the thrumming roar of the great ship. Eagerly Gresth Gkae watched--and sighed in relief. The nearer of the three enemy ships was crumbling to dust. Now the other two were beginning to become blurred of outline. They were fleeing--but oh, so slowly. Easily the greater ship chased them down, till only floating dust, and a few small pieces of-- Gresth Gkae shrieked in pain, and horror. The destroyed ships had fought in dying. All space seemed to blossom out with a terrible light, a light that wrapped around them, and burned into him, and through him. His eyes were dark and burning lumps in his head, his flesh seemed crawling, stinging--he was being flayed alive--in shrieking agony he crumpled to the floor. Hospital attachés came to him, and injected drugs. Slowly torturing consciousness left him. The doctors began working over his horribly burned body, shuddering inwardly as the protective, feather-like covering of his skin loosened, and dropped from his body. Tenderly they lowered him into a bath of chemicals-- "The terrible light which caused so much damage to our men," reported a physicist, "was analyzed, and found to have some extraordinary lines. It was largely mercury-vapor spectrum, but the spectrum of mercury-atoms in an impossibly strained condition. I would suggest that great care be used hereafter, and all men be equipped with protective masks when observations are needed. This sun is very rich in the infra-X-rays and ultra-visible light. The explosion of light, we witnessed, was dangerous in its consisting almost wholly of very short and hard infra-X-rays." The physicist had a special term for what we know as ultra-violet light. To him, blue was ultra-violet, and exceedingly dangerous to red-sensitive eyes. To him, our ultra-violet was a long X-ray, and was designated by a special term. And to him--the explosion of the atostor reservoirs was a terrible and mystifying calamity. To the men in the five tiny scout-ships, it was also a surprise, and a painful one. Even space-hardened humans were burned by the terrifically hard ultra-violet from the explosion. But they got some hint of what it had meant to the Mirans from the confusion that resulted in the fleet. Several of the nearer ships spun, twisted, and went erratically off their courses. All seemed uncontrolled momentarily. The five scouts, following orders, darted instantly toward the Lunar Bank. Why, they did not know. But those were orders. They were to land there. The reason was that, faster than any Solarian ship, radio signals had reached McLaurin, and he, and most of the staff of the IP service had been moved to the Lunar Bank. Buck Kendall had extended an invitation in this "unexpected emergency." It so happened that Buck Kendall's invitation got there before any description of the Strangers, or their actions had arrived. The staff was somewhat puzzled as to how this happened-- And now for the satellites of great Jupiter. One hundred and fifty giant interstellar cruisers advanced on Callisto. They didn't pause to investigate the mines and scattered farms of the satellite, but ten great ships settled, and a horde of warriors began pouring out. One hundred and forty ships reached Ganymede. One hundred and thirty sailed on. One hundred and thirty ships reached Europa--and they sailed on hurriedly, one hundred and twenty-nine of them. Gresth Gkae did not know it then, but the fleet had lost its first ship. The IP station on Europa had spoken back. They sailed in, a mighty armada, and the first dropped through Europa's thin, frozen atmosphere. They spotted the dome of the station, and a neutron ray lashed out at it. On the other, undefended worlds, this had been effective. Here--it was answered by ten five-foot UV rays. Further, these men had learned something from the destruction of the cruisers, and ten torpedoes had been unloaded, reloaded with atostor mercury, and sent out bravely. Easily the Mirans wiped out the first torpedo-- Shrieking, the Miran pilots clawed their way from the controls as the fearful flood of ultra-violet light struck their unaccustomed skins. Others too felt that burning flood. The second torpedo they caught and deflected on a beam of alternating-current magnetism that repelled it. It did not come nearer than half a mile to the ship. The third they turned their deflecting beam on--and something went strangely wrong with the beam. It pulled that torpedo toward the ship with a sickening acceleration--and the torpedo exploded in that frightful violet flame. * * * * * Five-foot diameter UV beams are nothing to play with. The Mirans were dodging these now as they loosed atomic bombs, only to see them exploded harmlessly by neutron guns, or caught in the magnetic screen. Gamma ray bombs were as useless. Again the beam of disintegrating force was turned on-- The present opponent was not a ship. It was an IP defense station, equipped with everything Solarian science knew, and the dome was an eight-foot wall of tungsten-beryllium. The eight feet of solid, ultra-resistant alloy drank up that crumbling beam, and liked it. The wall did not fail. The men inside the fort jerked and quivered as the strange beam, a small, small fraction of it, penetrated the eight feet of outer wall, the six feet or so of intervening walls, and the mercury atostor reserves. "Concentrate all those UV beams on one spot, and see if you can blast a hole in him before he shakes it loose," ordered the ray technician. "He'll wiggle if you start off with the beam. Train your sights on the nose of that first ship--when you're ready, call out." "Ready--ready--" Ten men replied. "Fire!" roared the technician. Ten titanic swords of pure ultra-violet energy, energy that practically no unconditioned metal will reflect to more than fifty per cent, emerged. There was a single spot of intense incandescence for a single hundredth of a second--and then the energy was burning its way through the inner, thinner skins with such rapidity that they sputtered and flickered like a broken televisor. One hundred and twenty-nine ships retreated hastily for conference, leaving a gutted, wrecked hull, broken by its fall, on Europa. Triumphantly, the Europa IP station hurled out its radio message of the first encounter between a fort and the Miran forces. Most important of all, it sent a great deal of badly wanted information regarding the Miran weapons. Particularly interesting was the fact that it had withstood the impact of that disintegrating ray. _ Read next: Chapter 8 Read previous: Chapter 6 Table of content of Ultimate Weapon GO TO TOP OF SCREEN Post your review Your review will be placed after the table of content of this book |