Home > Authors Index > John Jacob Astor > Journey In Other Worlds: A Romance Of The Future > This page
A Journey In Other Worlds: A Romance Of The Future, a novel by John Jacob Astor |
||
Book 1 - Chapter 6. Far-Reaching Plans |
||
< Previous |
Table of content |
Next > |
________________________________________________
_ BOOK I CHAPTER VI. FAR-REACHING PLANS Knowing that the rectification of the earth's axis was satisfactorily begun, and that each year would show an increasing improvement in climate, many of the delegates, after hearing Bearwarden's speech, set out for their homes. Those from the valley of the Amazon and the eastern coast of South America boarded a lightning express that rushed them to Key West at the rate of three hundred miles an hour. The railroad had six tracks, two for through passengers, two for locals, and two for freight. There they took a "water-spider," six hundred feet long by three hundred in width, the deck of which was one hundred feet above the surface, which carried them over the water at the rate of a mile a minute, around the eastern end of Cuba, through Windward Passage, and so to the South American mainland, where they continued their journey by rail. The Siberian and Russian delegates, who, of course, felt a keen interest in the company's proceedings, took a magnetic double-ender car to Bering Strait. It was eighteen feet high, one hundred and fifty feet long, and had two stories. The upper, with a toughened glass dome running the entire length, descended to within three feet of the floor, and afforded an unobstructed view of the rushing scenery. The rails on which it ran were ten feet apart, the wheels being beyond the sides, like those of a carriage, and fitted with ball bearings to ridged axles. The car's flexibility allowed it to follow slight irregularities in the track, while the free, independent wheels gave it a great advantage in rounding curves over cars with wheels and axle in one casting, in which one must slip while traversing a greater or smaller arc than the other, except when the slope of the tread and the centrifugal force happen to correspond exactly. The fact of having its supports outside instead of underneath, while increasing its stability, also enabled the lower floor to come much nearer the ground, while still the wheels were large. Arriving in just twenty hours, they ran across on an electric ferry-boat, capable of carrying several dozen cars, to East Cape, Siberia, and then, by running as far north as possible, had a short cut to Europe. The Patagonians went by the all-rail Intercontinental Line, without change of cars, making the run of ten thousand miles in forty hours. The Australians entered a flying machine, and were soon out of sight; while the Central Americans and members from other States of the Union returned for the most part in their mechanical phaetons. "A prospective improvement in travelling," said Bearwarden, as he and his friends watched the crowd disperse, "will be when we can rise beyond the limits of the atmosphere, wait till the earth revolves beneath us, and descend in twelve hours on the other side." "True," said Cortlandt, "but then we can travel westward only, and shall have to make a complete circuit when we wish to go east." A few days later there was a knock at President Bearwarden's door, while he was seated at his desk looking over some papers and other matters. Taking his foot from a partly opened desk drawer where it had been resting, he placed it upon the handle of a handsome brass-mounted bellows, which proved to be articulating, for, as he pressed, it called lustily, "Come in!" The door opened, and in walked Secretary of State Stillman, Secretary of the Navy Deepwaters, who was himself an old sailor, Dr. Cortlandt, Ayrault. Vice-President Dumby, of the T. A. S. Co., and two of the company's directors. "Good-morning," said Bearwarden, as he shook hands with his visitors. "Charmed to see you." "That's a great invention," said Secretary Stillman, examining the bellows. "We must get Congress to make an appropriation for its introduction in the department buildings in Washington. You have no idea how it dries my throat to be all the time shouting, 'Come in!'" "Do you know, Bearwarden," said Secretary Deepwaters, "I'm afraid when we have this millennium of climate every one will be so well satisfied that our friend here (pointing to Secretary Stillman with his thumb) will have nothing to do." "This world will soon be a dull place. I wish we could leave it for a change," said Ayrault. "I don't mean forever, of course, but just as people have grown tired of remaining like plants in the places in which they grew. Alan has been a caterpillar for untold ages; can he not become the butterfly?" "Since we have found out how to straighten the axis," said Deepwaters, "might we not go one better, and improve the orbit as well?--increase the difference between aphelion and perihelion, and give those that still like a changing climate a chance, while incidentally we should see more of the world--I mean the solar system--and, by enlarging the parallax, be able to measure the distance of a greater number of fixed stars. Put your helm hard down and shout 'Hard-a-lee!' You see, there is nothing simpler. You keep her off now, and six months hence you let her luff." "That's an idea!" said Bearwarden. "Our orbit could be enough like that of a comet to cross the orbits of both Venus and Mars; and the climatic extremes would not be inconvenient. The whole earth being simultaneously warmed or cooled, there would be no equinoctials or storms resulting from changes on one part of the surface from intense heat to intense cold; every part would have a twelve-hour day and night, and none would be turned towards or from the sun for six months at a time; for, however eccentric the orbit, we should keep the axis absolutely straight. At perihelion there would simply be increased evaporation and clouds near the equator, which would shield those regions from the sun, only to disappear again as the earth receded. "The only trouble," said Cortlandt, "is that we should have no fulcrum. Straightening the axis is simple enough, for we have the attraction of the sun with which to work, and we have but to increase it at one end while decreasing it at the other, and change this as the poles change their inclination towards the sun, to bring it about. If a comet with a sufficiently large head would but come along and retard us, or opportunely give us a pull, or if we could increase the attraction of the other planets for us, or decrease it at times, it might be done. If the force, the control of which was discovered too late to help us straighten the axis, could be applied on a sufficiently large scale; if apergy----" "I have it!" exclaimed Ayrault, jumping up. "Apergy will do it. We can build an airtight projectile, hermetically seal ourselves within, and charge it in such a way that it will be repelled by the magnetism of the earth, and it will be forced from it with equal or greater violence than that with which it is ordinarily attracted. I believe the earth has but the same relation to space that the individual molecule has to any solid, liquid, or gaseous matter we know; and that, just as molecules strive to fly apart on the application of heat, this earth will repel that projectile when electricity, which we are coming to look upon as another form of heat, is properly applied. It must be so, and it is the manifest destiny of the race to improve it. Man is a spirit cursed with a mortal body, which glues him to the earth, and his yearning to rise, which is innate, is, I believe, only a part of his probation and trial." "Show us how it can be done," shouted his listeners in chorus. "Apergy is and must be able to do it," Ayrault continued. "Throughout Nature we find a system of compensation. The centripetal force is offset by the centrifugal; and when, according to the fable, the crystal complained of its hard lot in being unable to move, while the eagle could soar through the upper air and see all the glories of the world, the bird replied, 'My life is but for a moment, while you, set in the rock, will live forever, and will see the last sunrise that flashes upon the earth.' "We know that Christ, while walking on the waves, did not sink, and that he and Elijah were carried up into heaven. What became of their material bodies we cannot tell, but they were certainly superior to the force of gravitation. We have no reason to believe that in miracles any natural law was broken, or even set aside, but simply that some other law, whose workings we do not understand, became operative and modified the law that otherwise would have had things its own way. In apergy we undoubtedly have the counterpart of gravitation, which must exist, or Nature's system of compensation is broken. May we not believe that in Christ's transfiguration on the mount, and in the appearance of Moses and Elias with him--doubtless in the flesh, since otherwise mortal eyes could not have seen them--apergy came into play and upheld them; that otherwise, and if no other modification had intervened, they would have fallen to the ground; and that apergy was, in other words, the working principle of those miracles?" "May we not also believe," added Cortlandt, "that in the transfiguration Christ's companions took the substance of their material bodies--the oxygen, hydrogen, nitrogen, and carbon--from the air and the moisture it contained; for, though spiritual bodies, be their activity magnetic or any other, could of course pass the absolute cold and void of space without being affected, no mortal body could; and that in the same manner Elijah's body dissolved into air without the usual intervention of decomposition; for we know that, though matter can easily change its form, it can never be destroyed." All assented to this, and Ayrault continued: "If apergy can annul gravitation, I do not see why it should not do more, for to annul it the repulsion of the earth that it produces must be as great as its attraction, unless we suppose gravitation for the time being to be suspended; but whether it is or not, does not affect the result in this case, for, after the apergetic repulsion is brought to the degree at which a body does not fall, any increase in the current's strength will cause it to rise, and in the case of electro-magnets we know that the attraction or repulsion has practically no limit. This will be of great advantage to us," he continued, "for if a projectile could move away from the earth with no more rapid acceleration than that with which it approaches, it would take too long to reach the nearest planet, but the maximum repulsion being at the start by reason of its proximity to the earth--for apergy, being the counterpart of gravitation, is subject to Newton's and Kepler's laws--the acceleration of a body apergetically charged will be greatest at first. Two inclined planes may have the same fall, but a ball will reach the bottom of one that is steepest near the top in less time than on any other, because the maximum acceleration is at the start. We are all tired of being stuck to this cosmical speck, with its monotonous ocean, leaden sky, and single moon that is useless more than half the time, while its size is so microscopic compared with the universe that we can traverse its great circle in four days. Its possibilities are exhausted; and just as Greece became too small for the civilization of the Greeks, and as reproduction is growth beyond the individual, so it seems to me that the future glory of the human race lies in exploring at least the solar system, without waiting to become shades." "Should you propose to go to Mars or Venus?" asked Cortlandt. "No," replied Ayrault, "we know all about Mars; it is but one seventh the size of the earth, and as the axis is inclined more than ours, it would be a less comfortable globe than this; while, as our president here told us in his T. A. S. Company's report, the axis of Venus is inclined to such a degree that it would be almost uninhabitable for us. It would be as if colonists tried to settle Greenland, or had come to North America during its Glacial period. Neither Venus nor Mars would be a good place now." "Where should you propose to go?" asked Stillman. "To Jupiter, and, if possible, after that to Saturn," replied Ayrault; "the former's mean distance from the sun is 480,000,000 miles; but, as our president showed us, its axis is so nearly straight that I think, with its internal warmth, there will be nothing to fear from cold. Though, on account of the planet's vast size, objects on its surface weigh more than twice as much as here, if I am able to reach it by means of apergy, the same force will enable me to regulate my weight. Will any one go with me?" "Splendid!" said Bearwarden. "If Mr. Dumby, our vice-president, will temporarily assume my office, nothing will give me greater pleasure." "So will I go, if there is room for me," said Cortlandt. "I will at once resign my place as Government expert, and consider it the grandest event of my life." "I am afraid," said Stillman, "if you take any more, you will be overcrowded." "Modesty forbids his saying," said Deepwaters, "that it wouldn't do for the country to have all its eggs in one basket." "Are you not afraid you will find the surface hot, or even molten?" asked Vice-President Dumby. "With its eighty-six thousand five hundred mile diameter, the amount of original internal heat must have been terrific." "No, said Cortlandt, "it cannot be molten, or even in the least degree luminous, for, if it were, its satellites would be visible when they enter its shadow, whereas they entirely disappear." "I do not believe Jupiter's surface is even perceptibly warm," said Bearwarden. "We know that Algol, known to the ancients as the 'Demon Star,' and several other variable stars, are accompanied by a dark companion, with which they revolve about a common centre, and which periodically obscures part of their light. Now, some of these non-luminaries are nearly as large as our sun, and, of course, many hundred times the size of Jupiter. If these bodies have lost enough heat to be invisible, Jupiter's surface at least must be nearly cold." "In the phosphorescence of seawater," said Cortlandt, "and in other instances in Nature, we find light without heat, and we may soon be able to produce it in the arts by oxidizing coal without the intervention of the steam engine; but we never find any considerable heat without light." "I am convinced," said Bearwarden, "that we shall find Jupiter habitable for intelligent beings who have been developed on a more advanced sphere than itself, though I do not believe it has progressed far enough in its evolution to produce them. I expect to find it in its Palaeozoic or Mesozoic period, while over a hundred years ago the English astronomer, Chambers, thought that on Saturn there was good reason for suspecting the presence of snow." "What sort of spaceship do you propose to have?" asked the vice-president. "As you have to pass through but little air," said Deepwaters, "I should suggest a short-stroke cylinder of large diameter, with a flat base and dome roof, composed of aluminum, or, still better, of glucinum or beryllium as it is sometimes called, which is twice as good a conductor of electricity as aluminum, four times as strong, and is the lightest of all known metals, having a specific gravity of only two, which last property will be of great use to you, for of course the more weight you have to propel the more apergetic repulsion you will have to develop." "I will get some drawing-paper I left outside in my trap," said Ayrault, "when with your ideas we may arrive at something definite," saying which, he left the room. "You see," replied Bearwarden, "his fiancee is not yet a senior, being in the class of two thousand and one at Vassar, and so cannot marry him for a year. Not till next June can this sweet girl graduate come forth with her mortar-board and sheepskin to enlighten the world and make him happy. That is, I suspect, one reason why he proposed this trip." _ |