Home > Authors Index > Charles Kingsley > Town Geology > This page
Town Geology, a non-fiction book by Charles Kingsley |
||
Chapter 3. The Stones In The Wall |
||
< Previous |
Table of content |
Next > |
________________________________________________
_ CHAPTER III. THE STONES IN THE WALL This is a large subject. For in the different towns of these islands, the walls are built of stones of almost every age, from the earliest to the latest; and the town-geologist may find a quite different problem to solve in the nearest wall, on moving from one town to another twenty miles off. All I can do, therefore, is to take one set of towns, in the walls of which one sort of stones is commonly found, and talk of them; taking care, of course, to choose a stone which is widely distributed. And such, I think, we can find in the so-called New Red sandstone, which, with its attendant marls, covers a vast tract--and that a rich and busy one--of England. From Hartlepool and the mouth of the Tees, down through Yorkshire and Nottinghamshire; over the manufacturing districts of central England; down the valley of the Severn; past Bristol and the Somersetshire flats to Torquay in South Devon; up north-westward through Shropshire and Cheshire; past Liverpool and northward through Lancashire; reappearing again, north of the Lake mountains, about Carlisle and the Scotch side of the Solway Frith, stretches the New Red sandstone plain, from under which everywhere the coal-bearing rocks rise as from a sea. It contains, in many places, excellent quarries of building-stone; the most famous of which, perhaps, are the well-known Runcorn quarries, near Liverpool, from which the old Romans brought the material for the walls and temples of ancient Chester, and from which the stone for the restoration of Chester Cathedral is being taken at this day. In some quarters, especially in the north-west of England, its soil is poor, because it is masked by that very boulder- clay of which I spoke in my last paper. But its rich red marls, wherever they come to the surface, are one of God's most precious gifts to this favoured land. On them, one finds oneself at once in a garden; amid the noblest of timber, wheat, roots, grass which is green through the driest summers, and, in the western counties, cider-orchards laden with red and golden fruit. I know, throughout northern Europe, no such charming scenery, for quiet beauty and solid wealth, as that of the New Red marls; and if I wished to show a foreigner what England was, I should take him along them, from Yorkshire to South Devon, and say--There. Is not that a country worth living for,--and worth dying for if need be? Another reason which I have for dealing with the New Red sandstone is this--that (as I said just now) over great tracts of England, especially about the manufacturing districts, the town-geologist will find it covered immediately by the boulder clay. The townsman, finding this, would have a fair right to suppose that the clay was laid down immediately, or at least soon after, the sandstones or marls on which it lies; that as soon as the one had settled at the bottom of some old sea, the other settled on the top of it, in the same sea. A fair and reasonable guess, which would in many cases, indeed in most, be quite true. But in this case it would be a mistake. The sandstone and marls are immensely older than the boulder-clay. They are, humanly speaking, some four or five worlds older. What do I mean? This--that between the time when the one, and the time when the other, was made, the British Islands, and probably the whole continent of Europe, have changed four or five times; in shape; in height above the sea, or depth below it; in climate; in the kinds of plants and animals which have dwelt on them, or on their sea- bottoms. And surely it is not too strong a metaphor, to call such changes a change from an old world to a new one. Mind. I do not say that these changes were sudden or violent. It is far more probable that they are only part and parcel of that vast but slow change which is going on everywhere over our whole globe. I think that will appear probable in the course of this paper. But that these changes have taken place, is my main thesis. The fact I assert; and I am bound to try and prove it. And in trying to do so, I shall no longer treat my readers, as I did in the first two papers, like children. I shall take for granted that they now understand something of the method by which geological problems are worked out; and can trust it, and me; and shall state boldly the conclusions of geologists, only giving proof where proof is specially needed. Now you must understand that in England there are two great divisions of these New Red sandstones, "Trias," as geologists call them. An upper, called in Germany Keuper, which consists, atop, of the rich red marl, below them, of sandstones, and of those vast deposits of rock-salt, which have been long worked, and worked to such good purpose, that a vast subsidence of land has just taken place near Nantwich in Cheshire; and serious fears are entertained lest the town itself may subside, to fill up the caverns below, from whence the salt has been quarried. Underneath these beds again are those which carry the building-stone of Runcorn. Now these beds altogether, in Cheshire, at least, are about 3,400 feet thick; and were not laid down in a year, or in a century either. Below them lies a thousand feet of sandstones, known in Germany by the name of "Bunter," from its mottled and spotted appearance. What lies under them again, does not concern us just now. I said that the geologists called these beds the Trias; that is, the triple group. But as yet we have heard of only two parts of it. Where is the third? Not here, but in Germany. There, between the Keuper above and the Bunter below, lies a great series of limestone beds, which, from the abundance of fossils which they contain, go by the name of Muschelkalk. A long epoch must therefore have intervened between the laying down of the Bunter and of the Keuper. And we have a trace of that long epoch, even in England. The Keuper lies, certainly, immediately on the Bunter; but not always "conformably" on it. That is, the beds are not exactly parallel. The Bunter had been slightly tilted, and slightly waterworn, before the Keuper was laid on it. It is reasonable, therefore, to suppose, that the Bunter in England was dry land, and therefore safe from fresh deposit, through ages during which it was deep enough beneath the sea in Germany, to have the Muschelkalk laid down on it. Here again, then, as everywhere, we have evidence of time--time, not only beyond all counting, but beyond all imagining. And now, perhaps, the reader will ask--If I am to believe that all new land is made out of old land, and that all rocks and soils are derived from the wear and tear of still older rocks, off what land came this enormous heap of sands more than 5,000 feet thick in places, stretching across England and into Germany? It is difficult to answer. The shape and distribution of land in those days were so different from what they are now, that the rocks which furnished a great deal of our sandstone may be now, for aught I know, a mile beneath the sea. But over the land which still stands out of the sea near us there has been wear and tear enough to account for any quantity of sand deposit. As a single instance--It is a provable and proven fact--as you may see from Mr. Ramsay's survey of North Wales--that over a large tract to the south of Snowdon, between Port Madoc and Barmouth, there has been ground off and carried away a mass of solid rock 20,000 feet thick; thick enough, in fact, if it were there still, to make a range of mountains as high as the Andes. It is a provable and proven fact that vast tracts of the centre of poor old Ireland were once covered with coal-measures, which have been scraped off in likewise, deprived of inestimable mineral wealth. The destruction of rocks--"denudation" as it is called--in the district round Malvern, is, I am told, provably enormous. Indeed, it is so over all Wales, North England, and West and North Scotland. So there is enough of rubbish to be accounted for to make our New Red sands. The round pebbles in it being, I believe, pieces of Old Red sandstone, may have come from the great Old Red sandstone region of South East Wales and Herefordshire. Some of the rubbish, too, may have come from what is now the Isle of Anglesey. For you find in the beds, from the top to the bottom (at least in Cheshire), particles of mica. Now this mica could not have been formed in the sand. It is a definite crystalline mineral, whose composition is well known. It is only found in rocks which have been subjected to immense pressure, and probably to heat. The granites and mica-slates of Anglesey are full of it; and from Anglesey--as likely as from anywhere else--these thin scales of mica came. And that is about all that I can say on the matter. But it is certain that most of these sands were deposited in a very shallow water, and very near to land. Sand and pebbles, as I said in my first paper, could not be carried far out to sea; and some of the beds of the Bunter are full of rounded pebbles. Nay, it is certain that their surface was often out of water. Of that you may see very pretty proofs. You find these sands ripple-marked, as you do shore-sands now. You find cracks where the marl mud has dried in the sun: and, more, you find the little pits made by rain. Of that I have no doubt. I have seen specimens, in which you could not only see at a glance that the marks had been made by the large drops of a shower, but see also from what direction the shower had come. These delicate markings must have been covered up immediately with a fresh layer of mud or sand. How long since? How long since that flag had seen the light of the sun, when it saw it once again, restored to the upper air by the pick of the quarryman? Who can answer that? Not I. Fossils are very rare in these sands; it is not easy to say why. It may be that the red oxide of iron in them has destroyed them. Few or none are ever found in beds in which it abounds. It is curious, too, that the Keuper, which is all but barren of fossils in England, is full of them in Wurtemberg, reptiles, fish, and remains of plants being common. But what will interest the reader are the footprints of a strange beast, found alike in England and in Germany--the Cheirotherium, as it was first named, from its hand-like feet; the Labyrinthodon, as it is now named, from the extraordinary structure of its teeth. There is little doubt now, among anatomists, that the bones and teeth of the so-called Labyrinthodon belong to the animal which made the footprints. If so, the creature must have been a right loathly monster. Some think him to have been akin to lizards; but the usual opinion is that he was a cousin of frogs and toads. Looking at his hands and other remains, one pictures him to oneself as a short, squat brute, as big as a fat hog, with a head very much the shape of a baboon, very large hands behind and small ones in front, waddling about on the tide flats of a sandy sea, and dragging after him, seemingly, a short tail, which has left its mark on the sand. What his odour was, whether he was smooth or warty, what he ate, and in general how he got his living, we know not. But there must have been something there for him to eat; and I dare say that he was about as happy and about as intellectual as the toad is now. Remember always that there is nothing alive now exactly like him, or, indeed, like any animal found in these sandstones. The whole animal world of this planet has changed entirely more than once since the Labyrinthodon waddled over the Cheshire flats. A lizard, for instance, which has been found in the Keuper, had a skull like a bird's, and no teeth--a type which is now quite extinct. But there is a more remarkable animal of which I must say a few words, and one which to scientific men is most interesting and significant. Both near Warwick, and near Elgin in Scotland, in Central India, and in South Africa, fossil remains are found of a family of lizards utterly unlike anything now living save one, and that one is crawling about, plentifully I believe--of all places in the world--in New Zealand. How it got there; how so strange a type of creature should have died out over the rest of the world, and yet have lasted on in that remote island for long ages, ever since the days of the New Red sandstone, is one of those questions--quite awful questions I consider them--with which I will not puzzle my readers. I only mention it to show them what serious questions the scientific man has to face, and to answer, if he can. Only the next time they go to the Zoological Gardens in London, let them go to the reptile-house, and ask the very clever and courteous attendant to show them the Sphenodons, or Hatterias, as he will probably call them--and then look, I hope with kindly interest, at the oldest Conservatives they ever saw, or are like to see; gentlemen of most ancient pedigree, who have remained all but unchanged, while the whole surface of the globe has changed around them more than once or twice. And now, of course, my readers will expect to hear something of the deposits of rock-salt, for which Cheshire and its red rocks are famous. I have never seen them, and can only say that the salt does not, it is said by geologists, lie in the sandstone, but at the bottom of the red marl which caps the sandstone. It was formed most probably by the gradual drying up of lagoons, such as are depositing salt, it is said now, both in the Gulf of Tadjara, on the Abyssinian frontier opposite Aden, and in the Runn of Cutch, near the Delta of the Indus. If this be so, then these New Red sandstones may be the remains of a whole Sahara--a sheet of sandy and all but lifeless deserts, reaching from the west of England into Germany, and rising slowly out of the sea; to sink, as we shall find, beneath the sea again. And now, as to the vast period of time--the four or five worlds, as I called it--which elapsed between the laying down of the New Red sandstones and the laying down of the boulder-clays. I think this fact--for fact it is--may be better proved by taking readers an imaginary railway journey to London from any spot in the manufacturing districts of central England--begging them, meanwhile, to keep their eyes open on the way. And here I must say that I wish folks in general would keep their eyes a little more open when they travel by rail. When I see young people rolling along in a luxurious carriage, their eyes and their brains absorbed probably in a trashy shilling novel, and never lifted up to look out of the window, unconscious of all that they are passing--of the reverend antiquities, the admirable agriculture, the rich and peaceful scenery, the like of which no country upon earth can show; unconscious, too, of how much they might learn of botany and zoology, by simply watching the flowers along the railway banks and the sections in the cuttings: then it grieves me to see what little use people make of the eyes and of the understanding which God has given them. They complain of a dull journey: but it is not the journey which is dull; it is they who are dull. Eyes have they, and see not; ears have they, and hear not; mere dolls in smart clothes, too many of them, like the idols of the heathen. But my readers, I trust, are of a better mind. So the next time they find themselves running up southward to London--or the reverse way-- let them keep their eyes open, and verify, with the help of a geological map, the sketch which is given in the following pages. Of the "Black Countries"--the actual coal districts I shall speak hereafter. They are in England either shores or islands yet undestroyed, which stand out of the great sea of New Red sandstone, and often carry along their edges layers of far younger rocks, called now Permian, from the ancient kingdom of Permia, in Russia, where they cover a vast area. With them I will not confuse the reader just now, but will only ask him to keep his eye on the rolling plain of New Red sands and marls past, say, Birmingham and Warwick. After those places, these sands and marls dip to the south-east, and other rocks and soils appear above them, one after another, dipping likewise towards the south-east--that is, toward London. First appear thin layers of a very hard blue limestone, full of shells, and parted by layers of blue mud. That rock runs in a broad belt across England, from Whitby in Yorkshire, to Lyme in Dorsetshire, and is known as Lias. Famous it is, as some readers may know, for holding the bones of extinct monsters--Ichthyosaurs and Plesiosaurs, such as the unlearned may behold in the lake at the Crystal Palace. On this rock lie the rich cheese pastures, and the best tracts of the famous "hunting shires" of England. Lying on it, as we go south-eastward, appear alternate beds of sandy limestone, with vast depths of clay between them. These "oolites," or freestones, furnish the famous Bath stone, the Oxford stone, and the Barnack stone of Northamptonshire, of which some of the finest cathedrals are built--a stone only surpassed, I believe, by the Caen stone, which comes from beds of the same age in Normandy. These freestones and clays abound in fossils, but of kinds, be it remembered, which differ more and more from those of the lias beneath, as the beds are higher in the series, and therefore nearer. There, too, are found principally the bones of that extraordinary flying lizard, the Pterodactyle, which had wings formed out of its fore-legs, on somewhat the same plan as those of a bat, but with one exception. In the bat, as any one may see, four fingers of the hand are lengthened to carry the wing, while the first alone is left free, as a thumb: but in the Pterodactyle, the outer or "little" finger alone is lengthened, and the other four fingers left free--one of those strange instances in nature of the same effect being produced in widely different plants and animals, and yet by slightly different means, on which a whole chapter of natural philosophy--say, rather, natural theology--will have to be written some day. But now consider what this Lias, and the Oolites and clays upon it mean. They mean that the New Red sandstone, after it had been dry land, or all but dry land (as is proved by the footprints of animals and the deposits of salt), was sunk again beneath the sea. Each deposit of limestone signifies a long period of time, during which that sea was pure enough to allow reefs of coral to grow, and shells to propagate, at the bottom. Each great band of clay signifies a long period, during which fine mud was brought down from some wasting land in the neighbourhood. And that land was not far distant is proved by the bones of the Pterodactyle, of Crocodiles, and of Marsupials; by the fact that the shells are of shallow-water or shore species; by the presence, mixed with them, of fragments of wood, impressions of plants, and even wing-shells of beetles; and lastly, if further proof was needed, by the fact that in the "dirt-bed" of the Isle of Portland and the neighbouring shores, stumps of trees allied to the modern sago-palms are found as they grew in the soil, which, with them, has been covered up in layers of freshwater shale and limestone. A tropic forest has plainly sunk beneath a lagoon; and that lagoon, again, beneath the sea. And how long did this period of slow sinking go on? Who can tell? The thickness of the Lias and Oolites together cannot be less than a thousand feet. Considering, then, the length of time required to lay down a thousand feet of strata, and considering the vast difference between the animals found in them, and the few found in the New Red sandstone, we have a right to call them another world, and that one which must have lasted for ages. After we pass Oxford, or the Vale of Aylesbury, we enter yet another world. We come to a bed of sand, under which the freestones and their adjoining clays dip to the south-east. This is called commonly the lower Greensand, though it is not green, but rich iron-red. Then succeeds a band of stiff blue clay, called the Gault, and then another bed of sand, the upper Greensand, which is more worthy of the name, for it does carry, in most places, a band of green or "glauconite" sand. But it and the upper layers of the lower Greensand also, are worth our attention; for we are all probably eating them from time to time in the form of bran. It had been long remarked that certain parts of these beds carried admirable wheatland; it had been remarked, too, that the finest hop- lands--those of Farnham, for instance, and Tunbridge--lay upon them: but that the fertile band was very narrow; that, as in the Surrey Moors, vast sheets of the lower Greensand were not worth cultivation. What caused the striking difference? My beloved friend and teacher, the late Dr. Henslow, when Professor of Botany at Cambridge, had brought to him by a farmer (so the story ran) a few fossils. He saw, being somewhat of a geologist and chemist, that they were not, as fossils usually are, carbonate of lime, but phosphate of lime--bone-earth. He said at once, as by an inspiration, "You have found a treasure--not a gold-mine, indeed, but a food-mine. This is bone-earth, which we are at our wits' end to get for our grain and pulse; which we are importing, as expensive bones, all the way from Buenos Ayres. Only find enough of them, and you will increase immensely the food supply of England, and perhaps make her independent of foreign phosphates in case of war." His advice was acted on; for the British farmer is by no means the stupid personage which townsfolk are too apt to fancy him. This bed of phosphates was found everywhere in the Greensand, underlying the Chalk. It may be traced from Dorsetshire through England to Cambridge, and thence, I believe, into Yorkshire. It may be traced again, I believe, all round the Weald of Kent and Sussex, from Hythe to Farnham--where it is peculiarly rich--and so to Eastbourne and Beachey Head; and it furnishes, in Cambridgeshire, the greater part of those so-called "coprolites," which are used perpetually now for manure, being ground up, and then treated with sulphuric acid, till they become a "soluble super-phosphate of lime." So much for the useless "hobby," as some fancy it, of poking over old bones and stones, and learning a little of the composition of this earth on which God has placed us. How to explain the presence of this vast mass of animal matter, in one or two thin bands right across England, I know not. That the fossils have been rolled on a sea-beach is plain to those who look at them. But what caused so vast a destruction of animal life along that beach, must remain one of the buried secrets of the past. And now we are fast nearing another world, which is far younger than that coprolite bed, and has been formed under circumstances the most opposite to it. We are nearing, by whatever rail we approach London, the escarpment of the chalk downs. All readers, surely, know the white chalk, the special feature and the special pride of the south of England. All know its softly- rounded downs, its vast beech woods, its short and sweet turf, its snowy cliffs, which have given--so some say--to the whole island the name of Albion--the white land. But all do not, perhaps, know that till we get to the chalk no single plant or animal has been found which is exactly like any plant or animal now known to be living. The plants and animals grow, on the whole, more and more like our living forms as we rise in the series of beds. But only above the chalk (as far as we yet know) do we begin to find species identical with those living now. This in itself would prove a vast lapse of time. We shall have a further proof of that vast lapse when we examine the chalk itself. It is composed--of this there is now no doubt--almost entirely of the shells of minute animalcules; and animalcules (I use an unscientific word for the sake of unscientific readers) like these, and in some cases identical with them, are now forming a similar deposit of mud, at vast depths, over the greater part of the Atlantic sea-floor. This fact has been put out of doubt by recent deep-sea dredgings. A whole literature has been written on it of late. Any reader who wishes to know it, need only ask the first geologist he meets; and if he has the wholesome instinct of wonder in him, fill his imagination with true wonders, more grand and strange than he is like to find in any fairy tale. All I have to do with the matter here is, to say that, arguing from the known to the unknown, from the Atlantic deep- sea ooze which we do know about, to the chalk which we do not know about, the whole of the chalk must have been laid down at the bottom of a deep and still ocean, far out of the reach of winds, tides, and even currents, as a great part of the Atlantic sea-floor is at this day. Prodigious! says the reader. And so it is. Prodigious to think that that shallow Greensand shore, strewed with dead animals, should sink to the bottom of an ocean, perhaps a mile, perhaps some four miles deep. Prodigious the time during which it must have lain as a still ocean-floor. For so minute are the living atomies which form the ooze, that an inch, I should say, is as much as we can allow for their yearly deposit; and the chalk is at least a thousand feet thick. It may have taken, therefore, twelve thousand years to form the chalk alone. A rough guess, of course, but one as likely to be two or three times too little as two or three times too big. Such, or somewhat such, is the fact. It had long been suspected, and more than suspected; and the late discoveries of Dr. Carpenter and Mr. Wyville Thompson have surely placed it beyond doubt. Thus, surely, if we call the Oolitic beds one new world above the New Red sandstone, we must call the chalk a second new world in like wise. I will not trouble the reader here with the reasons why geologists connect the chalk with the greensands below it, by regular gradations, in spite of the enormous downward leap, from sea-shore to deep ocean, which the beds seem (but only seem) to have taken. The change--like all changes in geology--was probably gradual. Not by spasmodic leaps and starts, but slowly and stately, as befits a God of order, of patience, and of strength, have these great deeds been done. But we have not yet done with new worlds or new prodigies on our way to London, as any Londoner may ascertain for himself, if he will run out a few miles by rail, and look in any cutting or pit, where the surface of the chalk, and the beds which lie on it, are exposed. On the chalk lie--especially in the Blackheath and Woolwich district- -sands and clays. And what do they tell us? Of another new world, in which the chalk has been lifted up again, to form gradually, doubtless, and at different points in succession, the shore of a sea. But what proof is there of this? The surface of the chalk is not flat and smooth, as it must have been when at the bottom of the sea. It is eaten out into holes and furrows, plainly by the gnawing of the waves; and on it lie, in many places, large rolled flints out of chalk which has been destroyed, beds of shore-shingle, beds of oysters lying as they grew, fresh or brackish water-shells standing as they lived, bits of lignite (fossil wood half turned to coal), and (as in Katesgrove pits at Reading) leaves of trees. Proof enough, one would say, that the chalk had been raised till part of it at least became dry land, and carried vegetation. And yet we have not done. There is another world to tell of yet. For these beds (known as the Woolwich and Reading beds) dip under that vast bed of London clay, four hundred and more feet thick, which (as I said in my last chapter) was certainly laid down by the estuary of some great tropic river, among palm-trees and Anonas, crocodiles and turtles. Is the reader's power of belief exhausted? If not: there are to be seen, capping almost every high land round London, the remains of a fifth world. Some of my readers may have been to Ascot races, or to Aldershot camp, and may recollect the table-land of the sandy moors, perfectly flat atop, dreary enough to those to whom they are not (as they have long been to me) a home and a work-field. Those sands are several hundred feet thick. They lie on the London clay. And they represent--the reader must take geologists' word for it--a series of beds in some places thousands of feet thick, in the Isle of Wight, in the Paris basin, in the volcanic country of the Auvergne, in Switzerland, in Italy; a period during which the land must at first have swarmed with forms of tropic life, and then grown--but very gradually--more temperate, and then colder and colder still; till at last set in that age of ice, which spread the boulder pebbles over all rocks and soils indiscriminately, from the Lake mountains to within a few miles of London. For everywhere about those Ascot moors, the top of the sands has been ploughed by shore-ice in winter, as they lay a-wash in the shallow sea; and over them, in many places, is spread a thin sheet of ice gravel, more ancient, the best geologists think, than the boulder and the boulder-clay. If any of my readers ask how long the period was during which those sands of Ascot Heath and Aldershot have been laid down, I cannot tell. But this we can tell. It was long enough to see such changes in land and sea, that maps representing Europe during the greater part of that period (as far as we can guess at it) look no more like Europe than like America or the South Sea Islands. And this we can tell besides: that that period was long enough for the Swiss Alps to be lifted up at least 10,000 feet of their present height. And that was a work which--though God could, if He willed it, have done it in a single day--we have proof positive was not done in less than ages, beside which the mortal life of man is as the life of the gnat which dances in the sun. And all this, and more--as may be proved from the geology of foreign countries--happened between the date of the boulder-clay, and that of the New Red sandstone on which it rests. _ |